Chrome Extension
WeChat Mini Program
Use on ChatGLM

Effects of non-uniform root zone salinity on growth, ion regulation, and antioxidant defense system in two alfalfa cultivars.

Plant physiology and biochemistry : PPB(2018)

Cited 24|Views28
No score
Abstract
A split-root system was established to investigate the effects of uniform (0/0, 50/50, and 200/200 mM salt [NaCl]) and non-uniform (0/200 and 50/200 mM NaCl) salt stress on growth, ion regulation, and the antioxidant defense system of alfalfa (Medicago sativa) by comparing a salt-tolerant (Zhongmu No.1) and salt-sensitive (Algonquin) cultivar. We found that non-uniform salinity was associated with greater plant growth rate and shoot dry weight, lower leaf Na+ concentration, higher leaf potassium cation (K+) concentration, lower lipid peroxidation, and greater superoxide dismutase (EC 1.15.1.1), catalase (EC 1.11.1.6), and peroxidase (EC 1.11.1.7) activities, compared to uniform salt stress in both alfalfa cultivars. Under non-uniform salinity, a significant increase in Na+ concentration and Na+ efflux and a decline in K+ efflux in the no-saline or low-saline part of the roots alleviated salt damage. Our results also demonstrated that proline and antioxidant enzymes accumulated in both the no- or low-saline and high-saline roots, revealing that osmotic adjustment and antioxidant defense had systemic rather than localized effects in alfalfa plants, and there was a functional equilibrium within the root system under non-uniform salt stress. The salt-tolerant cultivar Zhongmu No.1 exhibited greater levels of growth compared to Algonquin under both uniform and non-uniform salt stress, with Na+ tolerance and efflux abilities more effective and greater antioxidant defense capacity evident for cultivar Zhongmu No.1.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined