Effects of Escherichia coli and phosphate on the transport of titanium dioxide nanoparticles in heterogeneous porous media.

Water Research(2018)

引用 39|浏览19
暂无评分
摘要
Transport behaviors of titanium dioxide nanoparticles (nTiO2) were examined in the individual- and co-presence Escherichia (E.) coli and phosphate in heterogeneous sand (uncoated and iron oxyhydroxide-coated sand) columns. The results showed that for the individual presence of phosphate, the degree of nTiO2 deposition was less in uncoated than in iron oxide-coated sands. In contrast, an opposite trend that greater deposition of nTiO2 in uncoated than in coated sands occurred in the individual presence of E. coli. These observations are due to the phosphate adsorption changing the charge of NPs and iron oxyhydroxide-coated sand, or the preferential adhesion of bacterial to coated sand. In the copresence of E. coli and phosphate, interestingly, the phosphate level plays an important role in influencing nTiO2 transport. At a high phosphate concentration (>1.0 mM), the deposition of nTiO2 with the individual presence of E. coli was stronger than nTiO2 in the copresence of both E. coli and phosphate, regardless of sand type. The potential mechanism was that phosphate adsorption led to the formation of more negatively charged NPs-bacteria complexes that have higher mobility in sand columns. At a low phosphate level (≤0.1 mM), a similar observation occurred in uncoated sand. Nevertheless, the deposition of nTiO2 with copresence of E. coli and phosphate was greater than nTiO2 with E. coli in oxyhydroxide-coated sand. It was attributed to the formation of large NPs-bacteria-phosphate clusters (less mobile) and the preferential adhesion of E. coli cells to iron oxyhydroxide coating simultaneously. Taken together, our findings provide crucial knowledge for better understanding the fate, transport, and potential risks of engineered nanoparticles in complicated environmental settings where bacteria and phosphate are ubiquitous.
更多
查看译文
关键词
Titanium dioxide nanoparticles (nTiO2),Iron oxide-coated sand,Escherichia coli,Phosphate,Soil transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要