Antimicrobial and toxicological behavior of montmorillonite immobilized metal nanoparticles.

Materials Science and Engineering: C(2018)

Cited 28|Views3
No score
Abstract
With increasing demand for novel and potent antimicrobial agents to combat cross-infections and infectious diseases, silver and copper based nanoparticles (NPs) deposited over supports such as montmorillonite (MMT) are playing a crucial role in shaping the current research scenario. Although materials based on Ag NP and Cu NP on MMT have been reported, its toxicological properties on human cell lines have not been accounted for. This paper reports a comparative study on synthesis, antibacterial, antifungal and toxicological behavior of Ag and Cu NPs deposited over MMT nanosheets synthesized by employment of different reduction media. The effect of synthesized NP-MMT hybrids on human erythrocytes and fibroblast cells has been evaluated. The NP formation was facilitated using borohydride and ethyl alcohol (wet chemical route) and photo-reduction and thermal treatment (physical reduction route). The NP-MMT hybrids showed NP formation over supporting silicate layers with particle size ~10–50 nm confirmed by TEM micrographs and loading of ~6–22 wt% of metallic element by EDX analysis. The MMT layers were peeled apart to accommodate NPs inside its galleries, confirmed by increased d-value in powder WAXD. The NP-hybrids showed excellent inhibition zone against bacteria E.coli and S. aureus and fungi A. niger. RBC hemolysis and cytocompatibility assay were performed in vitro to advocate its safety to live human cells. These hybrid materials are potential candidates for new generation advanced antimicrobial materials with less toxicity and highly potent behavior.
More
Translated text
Key words
Nanoparticle,Silver,Copper,Montmorillonite,Antimicrobial,Toxicology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined