Ralstonia eutropha, containing high poly-β-hydroxybutyrate levels, regulates the immune response in mussel larvae challenged with Vibrio coralliilyticus.

Fish & shellfish immunology(2018)

引用 8|浏览3
暂无评分
摘要
Marine invertebrates rely mainly on innate immune mechanisms that include both humoral and cellular responses. Antimicrobial peptides (AMPs), lysozyme and phenoloxidase activity, are important components of the innate immune defense system in marine invertebrates. They provide an immediate and rapid response to invading microorganisms. The impact of amorphous poly-β-hydroxybutyrate (PHB-A) (1 mg PHB-A L-1) on gene expression of the AMPs mytimycin, mytilinB, defensin and the hydrolytic enzyme lysozyme in infected blue mussel larvae was investigated during "in vivo" challenge tests with Vibrio coralliilyticus (105 CFU mL-1). RNAs were isolated from mussel larvae tissue, and AMPs were quantified by q-PCR using the 18srRNA gene as a housekeeping gene. Our data demonstrated that AMPs genes had a tendency to be upregulated in challenged mussel larvae, and the strongest expression was observed from 24 h post-exposure onwards. The presence of both PHB-A and the pathogen stimulated the APMs gene expression, however no significant differences were noticed between treatments or between exposure time to the pathogen V. coralliilyticus. Looking at the phenoloxidase activity in the infected mussels, it was observed that the addition of PHB-A significantly increased the activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要