Dioxin and AHR impairs mesoderm gene expression and cardiac differentiation in human embryonic stem cells.

SCIENCE OF THE TOTAL ENVIRONMENT(2019)

引用 26|浏览8
暂无评分
摘要
Dioxin and dioxin-related polychlorinated biphenyls are potent toxicants with association with developmental heart defects and congenital heart diseases. However, the underlying mechanism of their developmental toxicity is not fully understood. Further, different animals show distinct susceptibility and phenotypes after exposure, suggesting possible species-specific effects. Using a human embryonic stem cell (ESC) cardiomyocyte differentiation model, we examined the impact, susceptible window, and dosage of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on human cardiac development. We showed that treatment of human ESCs with TCDD at the ESC stage inhibits cardiomyocyte differentiation, and the effect is largely mediated by the aryl hydrocarbon receptor (AHR). We further identified genes that are differentially expressed after TCDD treatment by RNA-sequencing, and genomic regions that are occupied by AHR by chromatin immunoprecipitation and high-throughput sequencing. Our results support the model that TCDD impairs human ESC cardiac differentiation by promoting AHR binding and repression of key mesoderm genes. More importantly, our study demonstrates the toxicity of dioxin in human embryonic development and uncovered a novel mechanism by which dioxin and AHR regulates lineage commitment. It also illustrates the power of ESC-based models in the systematic study of developmental toxicology. (C) 2018 Published by Elsevier B.V.
更多
查看译文
关键词
Human embryonic stem cells,AHR,Dioxin,Mesoderm,Cardiac differentiation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要