Abl2 is recruited to ventral actin waves through cytoskeletal interactions to promote lamellipodium extension.

K. Zhang,W. Lyu, A. J. Koleske, J. Yu

MOLECULAR BIOLOGY OF THE CELL(2018)

引用 7|浏览12
暂无评分
摘要
Abl family nonreceptor tyrosine kinases regulate changes in cell shape and migration. Abl2 localizes to dynamic actin-rich protrusions, such as lamellipodia in fibroblasts and dendritic spines in neurons. Abl2 interactions with cortactin, an actin filament stabilizer, are crucial for the formation and stability of actin-rich structures, but Abl2: cortactin-positive structures have not been characterized with high spatiotemporal resolution in cells. Using total internal reflection fluorescence microscopy, we demonstrate that Abl2 colocalizes with cortactin at wave-like structures within lamellum and lamellipodium tips. Abl2 and cortactin within waves are focal and transient, extend to the outer edge of lamella, and serve as the base for lamellipodia protrusions. Abl2-positive foci colocalize with integrin beta 3 and paxillin, adhesive markers of the lamellum-lamellipodium interface. Cortactin-positive waves still form in Abl2 knockout cells, but the lamellipodium size is significantly reduced. This deficiency is restored following Abl2 reexpression. Complementation analyses revealed that the Abl2 C-terminal half, which contains domains that bind actin and microtubules, is necessary and sufficient for recruitment to the wave-like structures and to support normal lamellipodium size, while the kinase domain-containing N-terminal half does not impact lamellipodium size. Together, this work demonstrates that Abl2 is recruited with cortactin to actin waves through cytoskeletal interactions to promote lamellipodium extension.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要