谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Shape And Fluctuations Of Positively Curved Ribbons

PHYSICAL REVIEW E(2018)

引用 8|浏览5
暂无评分
摘要
We study the shape and shape fluctuations of incompatible, positively curved ribbons, with a flat reference metric and a spherelike reference curvature. Such incompatible geometry is likely to occur in many self-assembled materials and other experimental systems. Ribbons of this geometry exhibit a sharp transition between a rigid ring and an anomalously soft spring as a function of their width. As a result, the temperature dependence of these ribbons' shape is unique, exhibiting a nonmonotonic dependence of the persistence and Kuhn lengths on the temperature and width. We map the possible configuration phase space and show the existence of three phases: At high temperatures it is the ideal chain phase, where the ribbon is well described by classical models (e.g., wormlike chain model). The second phase, for cold and narrow ribbons, is the plane ergodic phase; a ribbon in this phase might be thought of as made out of segments that gyrate within an oblate spheroid with extreme aspect ratio. The third phase, for cold, wide ribbons, is a direct result of the residual stress caused by the incompatibility, called the random structured phase. A ribbon in this phase behaves on large scales as an ideal chain. However, the segments of this chain are not straight; rather they may have different shapes, mainly helices (both left and right handed) of various pitches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要