Characteristics of live parameters of the HS-5 human bone marrow stromal cell line cocultured with the leukemia cells in hypoxia, for the studies of leukemia-stroma cross-talk.

CYTOMETRY PART A(2018)

引用 5|浏览4
暂无评分
摘要
The unique bone marrow microenvironment is created by stromal cells and such physical conditions as hypoxia. Both hypoxia and interactions with stromal cells have a significant impact on the biology of leukemia cells, changing their sensitivity to antileukemic therapies. Thus, it is crucial to introduce biological systems, which enable the investigation of leukemia-stroma cross-talk and verification of novel therapies effectiveness under such bone marrow niche-mimicking conditions. Here, we have established an experimental setup based on the hypoxic co-culture of stromal cells with different cell lines derived from various leukemia patients. Flow cytometry enables simultaneous fluorescent tracking of viable cells and analysis of fundamental cellular processes, also to monitor the basal vital state of cells in the hypoxic co-culture. This is critically important, as the stromal cells deliver a big variability of signals to protect leukemia cells and provide drug resistance. Therefore, keeping stromal cells at the healthy state is crucial during experimental procedures. In the proposed studies, viability, apoptosis, proliferation, ROS production, and mitochondrial membrane potential were monitored in both cell types, which were separated on the basis of the fluorescence of a cell tracker. We have shown that the proposed hypoxic co-culture conditions do not affect basal live parameters of stromal cells, indicating the relevance of proposed model. Finally, we utilized this experimental setup to monitor the stroma-mediated protection of leukemia cells from the imatinib-induced cell death, which contributes to the leukemia progression and development of therapy resistance. Altogether, we recommend such flow cytometric strategy as an elementary screen of the vital state of stromal cells, which should be performed when using the co-culture hypoxic models. The proposed approach can also be broadly used for other studies of the leukemia-stroma cross-talk and of the part played by the leukemic microenvironment in drug screening studies.
更多
查看译文
关键词
leukemia microenvironment,stromal cells,hypoxia,co-culture,cell tracking,proliferation dye,viability,apoptosis,ROS,mitochondrial membrane potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要