Engineered Nanoceria Cytoprotection In Vivo: Mitigation Of Reactive Oxygen Species And Double-Stranded Dna Breakage Due To Radiation Exposure

NANOSCALE(2018)

引用 33|浏览11
暂无评分
摘要
Cerium oxide nanomaterials are known to absorb ionizing radiation energy, as well as to neutralize free radicals in solution, by undergoing redox changes. We, therefore, proposed that ceria nanoparticles could be used in biomedical applications as an injectable, radio-protectant material. In this study, we examine the effectiveness of engineered nanoparticles in protecting germ cells from the damaging effects of irradiation-induced cell death, in vivo. C57BL/6J male mice were used as a model and irradiation was localized to the scrotal region at 2.5, 5, and/or 10 Gy intensities. Ceria nanoparticles were introduced as 100 L injections at 100 nM and 100 M via tail vein injections, weekly, for one month. Following this, the animals were sacrificed and their organs (heart, brain, kidneys) were harvested. Tissues were fixed, sectioned, and stained for instances of cell death, DNA damage (TUNEL assay), and ROS (nitro-tyrosine evolution). Tissues from mice treated with ceria nanoparticles showed significantly less (approximate to 13% decrease; *P < 0.05) tissue damage (per immunohistochemistry) over controls at up to 5 Gy radiation. DNA damage and ROS also decrease substantially with ceria treatment, confirming ceria's capacity as an injectable, radio-protectant material. The study also highlights the ability of ceria nanoparticles to protect cells/tissues from both direct and indirect effects of ionizing radiation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要