谷歌Chrome浏览器插件
订阅小程序
在清言上使用

The Notch Family Transcription Factor, RBPJκ, Modulates Glucose Transporter and Ovarian Steroid Hormone Receptor Expression During Decidualization

REPRODUCTIVE SCIENCES(2019)

引用 11|浏览13
暂无评分
摘要
During decidualization, endometrial stromal cells differentiate into a secretory phenotype to modulate the uterine microenvironment and promote embryo implantation. This highly metabolic process relies on ovarian steroid receptors and glucose transporters. Canonical Notch signaling is mediated by the transcription factor Recombination Signal Binding Protein for Immunoglobulin Kappa J Region (RBPJ). Loss of RBPJ in the mouse uterus ( Pgr cre /+ Rbpj flox/flox ; Rbpj c-KO) results in subfertility in part due to an abnormal uterine—embryonic axis during implantation and, as described herein, decidualization failure. Induced in vivo decidualization in Rbpj c-KO mice was impaired with the downregulation of decidual markers and decreased progesterone receptor (Pgr) signaling. Consistent with in vivo mouse data, RBPJ knockdown during in vitro Human uterine fibroblast (HuF) cell decidualization results in the reduced expression of decidual marker genes along with PGR . Expression of the glucose transporter, SLC2A1 , was decreased in the RBPJ-silenced HuF cells, which corresponded to decreased Slc2a1 in the secondary decidual zone of Rbpj c-KO mouse uteri. Exogenous administration of pyruvate, which bypasses the need for glucose, rescues PRL expression in RBPJ -deficient HuF cells. In summary, Notch signaling through RBPJ controls both ovarian steroid receptor PGR and glucose transporter SLC2A1 expression during decidualization, and this dysregulation likely contributes to embryo implantation failure.
更多
查看译文
关键词
decidualization,RBPJ,notch,progesterone receptor,glucose transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要