Application of the fragment molecular orbital method to discover novel natural products for prion disease.

Scientific reports(2018)

引用 16|浏览25
暂无评分
摘要
Conformational conversion of the normal cellular isoform of the prion protein PrPC into an infectious isoform PrPSc causes pathogenesis in prion diseases. To date, numerous antiprion compounds have been developed to block this conversion and to detect the molecular mechanisms of prion inhibition using several computational studies. Thus far, no suitable drug has been identified for clinical use. For these reasons, more accurate and predictive approaches to identify novel compounds with antiprion effects are required. Here, we have applied an in silico approach that integrates our previously described pharmacophore model and fragment molecular orbital (FMO) calculations, enabling the ab initio calculation of protein-ligand complexes. The FMO-based virtual screening suggested that two natural products with antiprion activity exhibited good binding interactions, with hotspot residues within the PrPC binding site, and effectively reduced PrPSc levels in a standard scrapie cell assay. Overall, the outcome of this study will be used as a promising strategy to discover antiprion compounds. Furthermore, the SAR-by-FMO approach can provide extremely powerful tools in quickly establishing virtual SAR to prioritise compounds for synthesis in further studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要