谷歌Chrome浏览器插件
订阅小程序
在清言上使用

S-nitrosylation of endothelial nitric oxide synthase impacts erectile function

INTERNATIONAL JOURNAL OF IMPOTENCE RESEARCH(2018)

引用 9|浏览15
暂无评分
摘要
Neuronal and endothelial nitric oxide synthases (nNOS and eNOS respectively) play major roles in generating the nitric oxide bioactivity necessary for erectile function. S-nitrosylation has been shown to regulate NOS activity. The presence of S-nitrosylated NOS in the penis and the impact of NOS S-nitrosylation/denitrosylation on erectile function were examined. S-nitrosylated forms of NOS were identified by biotin-switch assay followed by western blot analysis. Erectile function in S-nitrosoglutathione reductase deficient (GSNO +/− ) and null (GSNO −/− ) mice were assessed by continuous cavernous nerve electrical stimulation (CCNES). Glutathione ethyl ester (GSHee) was used to manipulate S-nitrosylated NOS levels. Immunohistological and immunofluorescence analyses were used to identify the location of eNOS and GSNO-R in corporal tissue. eNOS and nNOS were S-nitrosylated in unstimulated penises of the mice. CCNES resulted in a time-dependent increase in eNOS S-nitrosylation with peak eNOS S-nitrosylation observed during detumescence. S-nitrosylated nNOS levels were unchanged. Intracorporal injection of GSHee reduced S-nitrosylated eNOS levels, enhancing time to maximum intracorporal pressure (ICP). eNOS and GSNO-R co-localize to the endothelium of the corpus cavernosum in the mouse and the human. ICP measurements obtained during CCNES demonstrate GSNO-R +/− and GSNO-R −/− animals cannot maintain an elevated ICP. Results suggest eNOS S-nitrosylation/denitrosylation is an important mechanism regulating eNOS activity during erectile function. GSNO-R is a key enzyme involved in the eNOS denitrosylation. The increase in eNOS S-nitrosylation (inactivation) observed with tumescence may begin a cycle leading to detumescence. Clinically this may indicate that alterations in the balance of S-nitrosylation/denitrosylation either directly or indirectly contribute to erectile dysfunction.
更多
查看译文
关键词
Experimental models of disease,Molecular biology,Medicine/Public Health,general,Urology,Reproductive Medicine,Andrology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要