Theory of plasmon reflection by a 1D junction.

OPTICS EXPRESS(2018)

引用 17|浏览25
暂无评分
摘要
We present a comprehensive study of the reflection of normally incident plasmon waves from a low-conductivity 1D junction in a 2D conductive sheet. Rigorous analytical results are derived in the limits of wide and narrow junctions. Two types of phenomena determine the reflectance, the cavity resonances within the junction and the capacitive coupling between the leads. The resonances give rise to alternating strong and weak reflection but are vulnerable to plasmonic damping. The capacitive coupling, which is immune to damping, induces a near perfect plasmon reflection in junctions narrower than 1/10 of the plasmon wavelength. Our results are important for infrared 2D plasmonic circuits utilizing slot antennas, split gates or nanowire gates. They are also relevant for the implementation of nanoscale terahertz detectors, where optimal light absorption coincides with the maximal junction reflectance. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要