Gene dosage and coexpression with endoplasmic reticulum secretion-associated factors improved the secretory expression of α-galactosidase.

Protein Expression and Purification(2019)

引用 6|浏览5
暂无评分
摘要
The α-galactosidases, which can catalyze the removal of α-1,6-linked terminal galactose residues from galactooligosaccharide materials, have good potential for industrial applications. The high-level and efficient secretion of the α-galactosidases into the extracellular space has greatly simplified the downstream bioengineering process, facilitating their bioapplications. In this study, the effects of gene dosage and endoplasmic reticulum secretion-associated factors (ERSAs) on the secretory expression of an α-galactosidase gene derived from a Aspergillus oryzae strain were investigated by constructing multicopy expression cassettes and coexpressing the α-galactosidase gene with ERSAs. With the increase in the gene copy-number in the host genome, the expression of GalA was improved. However, the secretory expression level was not linearly related to the copy number. When the number was higher than four copies, the expression level of GalA gene declined. The ERSAs factors HAC1, PDI, and Ero1 improved the secretory expression of α-galactosidase, while Hsp40 inhibited its secretion. After methanol-induced expression in a bench-top bioreactor, Pichia recombinants carrying four copies of GalA genes reached 3520 U/mL in the supernatant of the culture. We further optimized the parameters for α-galactosidase to hydrolyze two types of galactooligosaccharides: raffinose and stachyose. This study has fulfilled the scale-up production of α-galactosidase, thus facilitating its industrial applications.
更多
查看译文
关键词
Galactosidase,Gene dose,Copy number,Quantitative PCR,Endoplasmic reticulum secretion associated factors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要