A new method for the performance of external chest compressions during hypogravity simulation

Christina Mackaill, Gregori Sponchiado, Ana K. Leite,Paola Dias,Michele Da Rosa,Elliot J. Brown, Julio C.M. de Lima,Lucas Rehnberg,Thais Russomano

Life Sciences in Space Research(2018)

引用 5|浏览6
暂无评分
摘要
INTRODUCTION:2015 UK resuscitation guidelines aim for 50-60 mm depth when giving external chest compressions (ECCs). This is achievable in hypogravity if the rescuer flexes and extends their arms during CPR, or using a new method trialed; the 'Mackaill-Russomano' (MR CPR) method. METHODS:10 participants performed 3 sets of 30 ECCs in accordance with 2015 guidelines. A control was used at 1Gz, with eight further conditions using Mars and Moon simulations, with and without braces in the terrestrial position and using the MR CPR method. The MR CPR method involved straddling the mannequin, using its legs for stabilization. A body suspension device, with counterweights, simulated hypogravity environments. ECC depth, rate, angle of arm flexion and heart rate (HR) were measured. RESULTS:Participants completed all conditions, and ECC rate was achieved throughout. Mean (± SD) ECC depth using the MR CPR method at 0.38Gz was 54.1 ± 0.55 mm with braces; 50.5 ± 1.7 mm without. ECCs were below 50 mm at 0.17Gz using the MR CPR method (47.5 ± 1.47 mm with braces; 47.4 ± 0.87 mm without). In the terrestrial position, ECCs were more effective without braces (49.4 ± 0.26 mm at 0.38Gz; 43.9 ± 0.87 mm at 0.17Gz) than with braces (48.5 ± 0.28 mm at 0.38Gz; 42.4 ± 0.3 mm at 0.17Gz). Flexion increased from approximately 2° - 8° with and without braces respectively. HR did not change significantly from control. DISCUSSION:2015 guidelines were achieved using the MR CPR method at 0.38Gz, with no significant difference with and without braces. Participants were closer to achieving the required ECC depth in the terrestrial position without braces. ECC depth was not achieved at 0.17Gz, due to a greater reduction in effective body weight.
更多
查看译文
关键词
Cardiopulmonary resuscitation,Basic life support,External chest compressions,Hypogravity simulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要