4-Phenylbutyric Acid Reveals Good Beneficial Effects on Vital Organ Function via Anti-Endoplasmic Reticulum Stress in Septic Rats.

CRITICAL CARE MEDICINE(2016)

Cited 43|Views17
No score
Abstract
Objectives: Sepsis and septic shock are the common complications in ICUs. Vital organ function disorder contributes a critical role in high mortality after severe sepsis or septic shock, in which endoplasmic reticulum stress plays an important role. Whether anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to sepsis and the underlying mechanisms are not known. Design: Laboratory investigation. Setting: State Key Laboratory of Trauma, Burns and Combined Injury. Subjects: Sprague-Dawley rats. Interventions: Using cecal ligation and puncture-induced septic shock rats, lipopolysaccharide-treated vascular smooth muscle cells, and cardiomyocytes, effects of 4-phenylbutyric acid on vital organ function and the relationship with endoplasmic reticulum stress and endoplasmic reticulum stress-mediated inflammation, apoptosis, and oxidative stress were observed. Measurements and Main Results: Conventional treatment, including fluid resuscitation, vasopressin, and antibiotic, only slightly improved the hemodynamic variable, such as mean arterial blood pressure and cardiac output, and slightly improved the vital organ function and the animal survival of septic shock rats. Supplementation of 4-phenylbutyric acid (5 mg/kg; anti-endoplasmic reticulum stress), especially administered at early stage, significantly improved the hemodynamic variables, vital organ function, such as liver, renal, and intestinal barrier function, and animal survival in septic shock rats. 4-Phenylbutyric acid application inhibited the endoplasmic reticulum stress and endoplasmic reticulum stress-related proteins, such as CCAAT/enhancer-binding protein homologous protein in vital organs, such as heart and superior mesenteric artery after severe sepsis. Further studies showed that 4-phenylbutyric acid inhibited endoplasmic reticulum stressmediated cytokine release, apoptosis, and oxidative stress via inhibition of nuclear factor-kappa B, caspase-3 and caspase-9, and increasing glutathione peroxidase and superoxide dismutase expression, respectively. Conclusions: Anti-endoplasmic reticulum stress with 4-phenylbutyric acid is beneficial to septic shock. This beneficial effect of 4-phenylbutyric acid is closely related to the inhibition of endoplasmic reticulum stress-mediated oxidative stress, apoptosis, and cytokine release. This finding provides a potential therapeutic measure for clinical critical conditions, such as severe sepsis.
More
Translated text
Key words
4-phenylbutyric acid,cardiovascular,endoplasmic reticulum stress,septic shock
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined