From General to Specific: Can Primary Metabolism in Pseudomonas be Exploited for Narrow-Spectrum Antibiotics?

CHEMBIOCHEM(2019)

引用 8|浏览7
暂无评分
摘要
The spread of antimicrobial resistance is a major threat to human health, and patients requiring prolonged antibiotic exposure are in desperate need of new therapeutic strategies. It has been hypothesized that tailoring our antibiotics to inhibit molecular targets specific to pathogens might stem the spread of resistance. A prime candidate for such a strategy is Pseudomonas aeruginosa, which can be found in the lungs of nearly all adult cystic fibrosis patients and, due to chronic exposure to antibiotics, has a high rate of multidrug-resistant strains. Although much research has been done on P. aeruginosa virulence factors as narrow-spectrum targets, less attention has been paid to primary carbon metabolism being leveraged for pathogen-specific mechanisms. However, early studies show that primary metabolic pathways, although shared amongst all organisms, contain intricacies specific to Pseudomonas species that have potential for antibiotic exploitation. Here we lay out some of this work in the hopes that it inspires researchers to continue developing a knowledge base for future antibiotic discovery to build upon and include a case study of a Pseudomonas primary metabolic pathway that has been targeted by small molecules in a species-specific manner.
更多
查看译文
关键词
antibiotics,narrow-spectrum,primary metabolism,Pseudomonas sp.,tricarboxylic acid cycle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要