Chrome Extension
WeChat Mini Program
Use on ChatGLM

The acid-sensing ion channel ASIC1a mediates striatal synapse remodeling and procedural motor learning.

SCIENCE SIGNALING(2018)

Cited 25|Views61
No score
Abstract
Acid-sensing ion channel 1a (ASIC1a) is abundant in multiple brain regions, including the striatum, which serves as the input nucleus of the basal ganglia and is critically involved in procedural learning and motor memory. We investigated the functional role of ASIC1a in striatal neurons. We found that ASIC1a was critical for striatum-dependent motor coordination and procedural learning by regulating the synaptic plasticity of striatal medium spiny neurons. Global deletion of Asic1a in mice led to increased dendritic spine density but impaired spine morphology and postsynaptic architecture, which were accompanied by the decreased function of N-methyl-Daspartate (NMDA) receptors at excitatory synapses. These structural and functional changes caused by the loss of ASIC1a were largely mediated by reduced activation (phosphorylation) of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated protein kinases (ERK5). Consequently, Asic1a null mice exhibited poor performance on multiple motor tasks, which was rescued by striatal-specific expression of either ASIC1a or CaMKII. Together, our data reveal a previously unknown mechanism mediated by ASIC1a that promotes the excitatory synaptic function underlying striatum-related procedural learning and memory.
More
Translated text
Key words
striatal synapse remodeling,ion channel,learning,acid-sensing
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined