A structural methodology for modeling immune-tumor interactions including pro- and anti-tumor factors for clinical applications.

Mathematical biosciences(2018)

引用 21|浏览5
暂无评分
摘要
The immune system turns out to have both stimulatory and inhibitory factors influencing on tumor growth. In recent years, the pro-tumor role of immunity factors such as regulatory T cells and TGF-β cytokines has specially been considered in mathematical modeling of tumor-immune interactions. This paper presents a novel structural methodology for reviewing these models and classifies them into five subgroups on the basis of immune factors included. By using our experimental data due to immunotherapy experimentation in mice, these five modeling groups are evaluated and scored. The results show that a model with a small number of variables and coefficients performs efficiently in predicting the tumor-immune system interactions. Though immunology theorems suggest to employ a larger number of variables and coefficients, more complicated models are here shown to be inefficient due to redundant parallel pathways. So, these models are trapped in local minima and restricted in prediction capability. This paper investigates the mathematical models that were previously developed and proposes variables and pathways that are essential for modeling tumor-immune. Using these variables and pathways, a minimal structure for modeling tumor-immune interactions is proposed for future studies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要