Icariin protects cardiomyocytes against ischemia/reperfusion injury by attenuating SIRT1-dependent mitochondrial oxidative damage.

BRITISH JOURNAL OF PHARMACOLOGY(2018)

引用 59|浏览11
暂无评分
摘要
BACKGROUND AND PURPOSE Icariin, a major active ingredient in traditional Chinese medicines, is attracting increasing attention because of its unique pharmacological effects against ischaemic heart disease. The histone deacetylase, sirtuin-1, plays a protective role in ischaemia/reperfusion (I/R) injury, and this study was designed to investigate the protective role of icariin in models of cardiac I/R injury and to elucidate the potential involvement of sirtuin-1. EXPERIMENTAL APPROACH I/R injury was simulated in vivo (mouse hearts), ex vivo (isolated rat hearts) and in vitro (neonatal rat cardiomyocytes and H9c2 cells). Prior to I/R injury, animals or cells were exposed to icariin, with or without inhibitors of sirtuin-1 (sirtinol and SIRT1 siRNA). KEY RESULTS In vivo and in vitro, icariin given before I/R significantly improved post-I/R heart contraction and limited the infarct size and leakage of creatine kinase-MB and LDH from the damaged myocardium. Icariin also attenuated I/R-induced mitochondrial oxidative damage, decreasing malondialdehyde content and increasing superoxide dismutase activity and expression of Mn-superoxide dismutase. Icariin significantly improved mitochondrial membrane homeostasis by increasing mitochondrial membrane potential and cytochrome C stabilization, which further inhibited cell apoptosis. Sirtuin-1 was significantly up-regulated in hearts treated with icariin, whereas Ac-FOXO1 was simultaneously down-regulated. Importantly, sirtinol and SIRT1 siRNA either blocked icariin-induced cardioprotection or disrupted icariin-mediated mitochondrial homeostasis. CONCLUSIONS AND IMPLICATIONS Pretreatment with icariin protected cardiomyocytes from I/R-induced oxidative stress through activation of sirtuin-1 /FOXO1 signalling.
更多
查看译文
关键词
Apoptosis,Icariin,Ischemia/reperfusion injury,Mitochondrial oxidative damage,Silent information regulator 1
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要