A UPLC-ESI-MS/MS Method for Simultaneous Quantitation of Chlorogenic Acid, Scutellarin, and Scutellarein in Rat Plasma: Application to a Comparative Pharmacokinetic Study in Sham-Operated and MCAO Rats after Oral Administration of Erigeron breviscapus Extract.

Molecules (Basel, Switzerland)(2018)

引用 10|浏览33
暂无评分
摘要
Erigeron breviscapus, a traditional Chinese medicine, is clinically used for the treatment of occlusive cerebral vascular diseases. We developed a sensitive and reliable ultra-performance liquid chromatography-electrospray-tandem mass spectrometry (UPLC-ESI-MS/MS) method for simultaneous quantitation of chlorogenic acid, scutellarin, and scutellarein, the main active constituents in Erigeron breviscapus, and compared the pharmacokinetics of these active ingredients in sham-operated and middle cerebral artery occlusion (MCAO) rats orally administrated with Erigeron breviscapus extract. Plasma samples were collected at 15 time points after oral administration of the Erigeron breviscapus extract. The levels of chlorogenic acid, scutellarin, and scutellarein in rat plasma at various time points were determined by a UPLC-ESI-MS/MS method, and the drug concentration versus time plots were constructed to estimate pharmacokinetic parameters. The concentration of chlorogenic acid in the plasma reached the maximum plasma drug concentration in about 15 min and was below the limit of detection after 4 h. Scutellarin and scutellarein showed the phenomenon of multiple absorption peaks in sham-operated and MCAO rats, respectively. Compared with the sham-operated rats, the terminal elimination half-life of scutellarein in the MCAO rats was prolonged by more than two times and the area under the curve of each component in the MCAO rats was significantly increased. The results showed chlorogenic acid, scutellarin, and scutellarein in MCAO rats had higher drug exposure than that in sham-operated rats, which provided a reference for the development of innovative drugs, optimal dosing regimens, and clinical rational drug use.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要