How a dc Electric Field Drives Mott Insulators Out of Equilibrium.

PHYSICAL REVIEW LETTERS(2018)

引用 42|浏览51
暂无评分
摘要
Out of equilibrium phenomena are a major issue of modern physics. In particular, correlated materials such as Mott insulators experience fascinating long-lived exotic states under a strong electric field. Yet, the origin of their destabilization by the electric field is not elucidated. Here we present a comprehensive study of the electrical response of canonical Mott insulators GaM(4)Q(8) (M = V, Nb, Ta, Mo; Q = S, Se) in the context of a microscopic theory of electrical breakdown where in-gap states allow for a description in terms of a two-temperature model. Our results show how the nonlinearities and the resistive transition originate from a massive creation of hot electrons under an electric field. These results give new insights for the control of the long-lived states reached under an electric field in these systems which has recently open the way to new functionalities used in neuromorphic applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要