Random Walk with Restart on Multiplex and Heterogeneous Biological Networks.

BIOINFORMATICS(2019)

引用 172|浏览47
暂无评分
摘要
Motivation: Recent years have witnessed an exponential growth in the number of identified interactions between biological molecules. These interactions are usually represented as large and complex networks, calling for the development of appropriated tools to exploit the functional information they contain. Random walk with restart (RWR) is the state-of-the-art guilt-by-association approach. It explores the network vicinity of gene/protein seeds to study their functions, based on the premise that nodes related to similar functions tend to lie close to each other in the networks. Results: In this study, we extended the RWR algorithm to multiplex and heterogeneous networks. The walk can now explore different layers of physical and functional interactions between genes and proteins, such as protein-protein interactions and co-expression associations. In addition, the walk can also jump to a network containing different sets of edges and nodes, such as phenotype similarities between diseases. We devised a leave-one-out cross-validation strategy to evaluate the algorithms abilities to predict disease-associated genes. We demonstrate the increased performances of the multiplex-heterogeneous RWR as compared to several random walks on monoplex or heterogeneous networks. Overall, our framework is able to leverage the different interaction sources to outperform current approaches. Finally, we applied the algorithm to predict candidate genes for the Wiedemann-Rautenstrauch syndrome, and to explore the network vicinity of the SHORT syndrome.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要