Secretion and fusion of biogeochemically active archaeal membrane vesicles.

GEOBIOLOGY(2018)

Cited 5|Views10
No score
Abstract
Microbes belonging to the genus Metallosphaera oxidize sulfidic minerals. These organisms thrive at temperature extremes and are members of the archaeal phylum Crenarchaeota. Because they can employ a lithoautotrophic metabolism, energy availability likely limits their activity raising questions about how they conduct biogeochemical activity. Vesicles are membrane encapsulated structures produced by all biological lineages but using very different mechanisms. Across the Crenarchaeota, it has been proposed that a eukaryotic-like Endosomal Sorting Complex Required for Transport system promotes formation of these structures but in response to unknown signals and for undefined purposes. To address such questions, Metallosphaera sedula vesicle formation and function were studied under lithoautotrophic conditions. Energy deprivation was evaluated and found to stimulate vesicle synthesis while energy excess repressed vesicle formation. Purified vesicles adhered rapidly to the primary copper ore, chalcopyrite, and formed compact monolayers. These vesicle monolayers catalyzed iron oxidation and solubilization of mineralized copper in a time-dependent process. As these activities were membrane associated, their potential transfer by vesicle fusion to M.sedula cells was examined. Fluorophore-loaded vesicles rapidly transferred fluorescence under environmentally relevant conditions. Vesicles from a related archaeal species were also capable of fusion; however, this process was species-specific as vesicles from different species were incapable of fusion. In addition, vesicles produced by a copper-resistant M.sedula cell line transferred copper extrusion capacity along with improved viability over mutant M.sedula cells lacking copper transport proteins. Membrane vesicles may therefore play a role in modulating energy-related traits in geochemical environments by fusion-mediated protein delivery.
More
Translated text
Key words
archaea,membrane fusion,regulated secretion,thermoacidophiles,vesicles
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined