Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structure of the CoI intermediate of a cobalt pentapyridyl catalyst for hydrogen evolution revealed by time-resolved X-ray spectroscopy.

CHEMSUSCHEM(2018)

Cited 11|Views13
No score
Abstract
Cobalt polypyridyls are highly efficient water-stable molecular catalysts for hydrogen evolution. The catalytic mechanism explaining their activity is under debate and the main question is the nature of the involvement of pyridyls in the proton transfer: the pentapyridyl ligand, acting as a pentadentate ligand, can provide stability to the catalyst or one of the pyridines can be involved in the proton transfer. Time-resolved Co K-edge X-ray absorption spectroscopy in the microsecond time range indicates that, for the [Co-II(aPPy)] catalyst (aPPy=di([2,2-bipyridin]-6-yl)(pyridin-2-yl)methanol), the pendant pyridine dissociates from the cobalt in the intermediate Co-I state. This opens the possibility for pyridinium to act as an intramolecular proton donor. In the resting state, the catalyst returns to the original six-coordinate high-spin Co-II state with a pentapyridyl and one water molecule coordinating to the metal center. Such a bifunctional role of the polypyridyl ligands can be exploited during further optimization of the catalyst.
More
Translated text
Key words
cobalt,ligand effects,photocatalysis,reaction mechanisms,X-ray absorption spectroscopy
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined