SNRP-27, the C. elegans homolog of the tri-snRNP 27K protein, has a role in 5' splice site positioning in the spliceosome.

RNA(2018)

Cited 10|Views7
No score
Abstract
The tri-snRNP 27K protein is a component of the human U4/U6-U5 tri-snRNP and contains an N-terminal phosphorylated RS domain. In a forward genetic screen in C. elegans, we previously identified a dominant mutation, M141T, in the highlyconserved C-terminal region of this protein. The mutant allele promotes changes in cryptic 5' splice site choice. To better understand the function of this poorly characterized splicing factor, we performed high-throughput mRNA sequencing analysis on worms containing this dominant mutation. Comparison of alternative splice site usage between the mutant and wild-type strains led to the identification of 26 native genes whose splicing changes in the presence of the snrp-27 mutation. The changes in splicing are specific to alternative 5' splice sites. Analysis of new alleles suggests that snrp-27 is an essential gene for worm viability. We performed a novel directed-mutation experiment in which we used the CRISPR-cas9 system to randomly generate mutations specifically at M141 of SNRP-27. We identified eight amino acid substitutions at this position that are viable, and three that are homozygous lethal. All viable substitutions at M141 led to varying degrees of changes in alternative 5' splicing of native targets. We hypothesize a role for this SR-related factor in maintaining the position of the 5' splice site as U1snRNA trades interactions at the 5' end of the intron with U6snRNA and PRP8 as the catalytic site is assembled.
More
Translated text
Key words
RS domain,cryptic splice sites,pre-mRNA splicing,spliceosome
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined