谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Graphene Oxide/ZnS:Mn Nanocomposite Functionalized with Folic Acid as a Nontoxic and Effective Theranostic Platform for Breast Cancer Treatment.

NANOMATERIALS(2018)

引用 36|浏览14
暂无评分
摘要
Nanoparticle-based cancer theranostic agents generally suffer of poor dispersability in biological media, re-agglomeration over time, and toxicity concerns. To address these challenges, we developed a nanocomposite consisting of chemically-reduced graphene oxide combined with manganese-doped zinc sulfide quantum dots and functionalized with folic acid (FA-rGO/ZnS:Mn). We studied the dispersion stability, Doxorubicin (DOX) loading and release efficiency, target specificity, internalization, and biocompatibility of FA-rGO/ZnS:Mn against folate-rich breast cancer cells, and compared to its uncoated counterpart (rGO/ZnS:Mn). The results indicate that DOX is adsorbed on the graphene surface via pi-pi stacking and hydrophobic interaction, with enhanced loading (similar to 35%) and entrapment (similar to 60%) efficiency that are associated to the chelation of DOX and surface Zn2+ ions. DOX release is favored under acidic conditions reaching a release of up to 95% after 70 h. Membrane integrity of the cells assessed by Lactate dehydrogenase (LDH) release indicate that the surface passivation caused by folic acid (FA) functionalization decreases the strong hydrophobic interaction between the cell membrane wall and the edges/corners of graphene flakes. Chemotherapeutic effect assays reveal that the cancer cell viability was reduced up to similar to 50% at 3 mu g/mL of DOX-FA-rGO/ZnS:Mn exposure, which is more pronounced than those obtained for free DOX at the same doses. Moreover, DOX-rGO/ZnS:Mn did not show any signs of toxicity. An opposite trend was observed for cells that do not overexpress the folate receptors, indicating that FA functionalization endows rGO/ZnS:Mn with an effective ability to discriminate positive folate receptor cancerous cells, enhancing its drug loading/release efficiency as a compact drug delivery system (DDS). This study paves the way for the potential use of functionalized rGO/ZnS:Mn nanocomposite as a platform for targeted cancer treatment.
更多
查看译文
关键词
drug delivery,quantum dots,reduced graphene oxide,chemotherapy,theranostics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要