谷歌浏览器插件
订阅小程序
在清言上使用

Identification of major matrix metalloproteinase-20 proteolytic processing products of murine amelogenin and tyrosine-rich amelogenin peptide using a nuclear magnetic resonance spectroscopy based method.

Archives of oral biology(2018)

引用 6|浏览6
暂无评分
摘要
OBJECTIVE:The aim of this study was to identify major matrix metalloproteinase-20 (MMP20) proteolytic processing products of amelogenin over time and determine if the tyrosine-rich amelogenin peptide (TRAP) was a substrate of MMP20. DESIGN:Recombinant15N-labeled murine amelogenin and 13C,15N-labeled TRAP were incubated with MMP20 under conditions where amelogenin self-assembles into nanospheres. Digestion products were fractionated by reverse-phase high-performance liquid chromatography at various time points. Product identification took advantage of the intrinsic disorder property of amelogenin that results in little change to its fingerprint 1H-15N heteronuclear single-quantum coherence nuclear magnetic resonance spectrum in 2% acetic acid upon removing parts of the protein, allowing cleavage site identification by observing which amide cross peaks disappear. RESULTS:The primary product in five out of the six major reverse-phase high-performance liquid chromatography bands generated after a 24 h incubation of murine amelogenin with MMP20 were: S55-L163, P2-L147, P2-E162, P2-A167, and P2-R176. After 72 h these products were replaced with five major reverse-phase high-performance liquid chromatography bands containing: L46-A170, P2-S152, P2-F151, P2-W45, and short N-terminal peptides. TRAP was completely digested by MMP20 into multiple small peptides with the initial primary site of cleavage between S16 and Y17. CONCLUSIONS:Identification of the major MMP20 proteolytic products of amelogenin confirm a dynamic process, with sites towards the C-terminus more rapidly attacked than sites near the N-terminus. This observation is consistent with nanosphere models where the C-terminus is exposed and the N-terminus more protected. One previously reported end-product of the MMP20 proteolytic processing of amelogenin, TRAP, is shown to be an in vitro substrate for MMP20.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要