Combining Ozone With Uv And H2o2 For The Degradation Of Micropollutants From Different Origins: Lab-Scale Analysis And Optimization

ENVIRONMENTAL TECHNOLOGY(2019)

引用 45|浏览3
暂无评分
摘要
The degradation of micropollutants (MPs), including pesticides, herbicides, pharmaceuticals and endocrine disrupting compounds, by ozone-based advanced oxidation techniques (AOP) was investigated in this study. The effect of different factors, such as ozone concentration, hydrogen peroxide concentration and initial pH, on the removal rate was studied in detail. The combination of UV with ozone/ H2O2 increased the MPs degradation. For example, atrazine removal increased from 12.6% to 66.9%. Increasing the concentration of ozone and H2O2 can enhance the degradation efficiency of MPs, while excess H2O2 plays a role as a scavenger for (OH)-O-?. In addition, the optimizing conditions of degradation of MPs by an ozone-based AOP were investigated in this study. The optimal dosages of ozone for atrazine (ATZ), alachlor (ALA), carbamazepine (CBZ), 17-?-ethinylestradiol (EE2) and pentachlorophenol (PCP), were in the range of 0.6?0.75, while for ATZ a much higher dosage (5.4?mg/l) is needed. The optimal dosages of H2O2 concentration were at 0.75, 0.2, 0.47, 0.75 and 0.63?mM, and pH were at 10, 10, 7, 10 and 10, and reaction time at 38.5, 33.5 43, 6 and 6 min, respectively. Ozone-based AOP and in particular combination of UV with ozone and H2O2 is efficient to degrade atrazine, alachlor, carbamazepine, 17-?-ethinylestradiol and pentachlorophenol, and is attractive for future application of real wastewater treatment.
更多
查看译文
关键词
Micropollutants degradation, UV, O-3, H2O2, advanced oxidation process, GC-MS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要