Transcriptional Characterization of Compounds: Lessons Learned from the Public LINCS Data.

ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES(2016)

引用 20|浏览0
暂无评分
摘要
The NIH-funded LINCS program has been initiated to generate a library of integrated, network-based, cellular signatures (LINCS). A novel high-throughput gene-expression profiling assay known as L1000 was the main technology used to generate more than a million transcriptional profiles. The profiles are based on the treatment of 14 cell lines with one of many perturbation agents of interest at a single concentration for 6 and 24 hours duration. In this study, we focus on the chemical compound treatments within the LINCS data set. The experimental variables available include number of replicates, cell lines, and time points. Our study reveals that compound characterization based on three cell lines at two time points results in more genes being affected than six cell lines at a single time point. Based on the available LINCS data, we conclude that the most optimal experimental design to characterize a large set of compounds is to test them in duplicate in three different cell lines. Our conclusions are constrained by the fact that the compounds were profiled at a single, relative high concentration, and the longer time point is likely to result in phenotypic rather than mechanistic effects being recorded.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要