Effect Of Chlorine On Mycobacterium Gordonae And Mycobacterium Chubuense In Planktonic And Biofilm State

INTERNATIONAL JOURNAL OF MYCOBACTERIOLOGY(2018)

Cited 9|Views2
No score
Abstract
Background: There is evidence that drinking water could be a source of infections with pathogenic nontuberculous mycobacteria (NTM) potentially risky to human health. The aim was to investigate the resistance of two NTM isolated from drinking water, Mycobacterium gordonae and Mycobacterium chubuense, at different concentrations of chlorine (as sodium hypochlorite), used in drinking water sanitation. Methods: The NTM were grown in suspension and in biofilms and were challenged with biocide for 10 and 60 min. Results: To obtain 7-log reduction from the initial population of M. chubuense, in the planktonic state, there were necessary 20 ppm of chorine and 60 min of exposure. The same effect was achieved in M. gordonae with 10 ppm for the same period. The maximum reduction of both NTM in biofilm was 3-log reduction and was achieved using 30 ppm for 60 min. The chlorine susceptibility of cells in biofilms was significantly lower than that of planktonic cells. The results highlight the resistance of both NTM to the concentrations used in routine water sanitation (0.2 ppm according to Argentine Food Code). Differences in chlorine resistance found between the two NTM in planktonic growth decrease when they are grown in biofilm. Conclusion: This suggests that current water disinfection procedures do not always achieve effective control of NTM in the public supply system, with the consequent health risk to susceptible population, and the need to take into account biofilms, because of their deep consequences in the way to analyze the survival of prokaryotic cells in different environments.
More
Translated text
Key words
Biofilm, chlorine resistance, drinking water, nontuberculous mycobacteria, planktonic cells
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined