Enhancing multi-step DNA processing by solid-phase enzyme catalysis on polyethylene glycol coated beads.

BIOCONJUGATE CHEMISTRY(2018)

引用 4|浏览14
暂无评分
摘要
Covalent immobilization of enzymes on solid supports provides an alternative approach to homogeneous biocatalysis by adding the benefits of simple enzyme removal, improved stability, and adaptability to automation and high-throughput applications. Nevertheless, immobilized (IM) enzymes generally suffer from reduced activity compared to their soluble counterparts. The nature and hydrophobicity of the supporting material surface can introduce enzyme conformational change, spatial confinement, and limited substrate accessibility, all of which will result in loss of the immobilized enzyme activity. In this work, we demonstrate through kinetic studies that flexible polyethylene glycol (PEG) moieties modifying the surface of magnetic beads improve the activity of covalently immobilized DNA replication enzymes. PEG-modified immobilized enzymes were utilized in library construction for Illumina next-generation sequencing (NGS) increasing the read coverage across AT-rich regions.
更多
查看译文
关键词
Conductance Switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要