Distinct Anatomical Connectivity Patterns Differentiate Subdivisions of the Nonlemniscal Auditory Thalamus in Mice.

CEREBRAL CORTEX(2019)

引用 24|浏览42
暂无评分
摘要
Systematic examination of the inputs and outputs of the nonlemniscal auditory thalamus will facilitate the functional elucidation of this complex structure in the central auditory system. In mice, comprehensive tracing studies that reveal the long-range connectivity of the nonlemniscal auditory thalamus are lacking. To this end, we used Cre-inducible anterograde and monosynaptic retrograde viruses in Calbindin-2A-dgCre-D and Calretinin-IRES-Cre mice, focusing on the differences across subdivisions of the nonlemniscal auditory thalamus. We found that, 1) the dorsal and medial parts of the auditory thalamus were predominantly connected to sensory processing centers, whereas the posterior intralaminar (PIN) and peripeduncular nucleus (PP) were additionally connected to emotion and motivation modulation centers; 2) ventral auditory cortical areas were the major source of cortical inputs for all subdivisions, and the PIN/PP received more inputs from cortical layer 5 than other subdivisions did; 3) deep layers of the superior colliculus and rostral part of the nonlemniscal inferior colliculus preferentially projected to the PIN/PP; and 4) compared with the dorsal auditory thalamus, the PIN/PP mainly innervated association cortices. In addition, new brain areas connected to the nonlemniscal auditory thalamus, mostly the PIN/PP, were identified. Our results suggested subdivision-specific function of the nonlemniscal auditory thalamus in sound processing.
更多
查看译文
关键词
calcium-binding proteins,connectivity,mouse,nonlemniscal auditory thalamus,virus-assisted tracing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要