Comparison of Functional Localization Accuracy with Different Co-registration Strategies in Presurgical fMRI for Brain Tumor Patients.

MEDICAL PHYSICS(2018)

引用 1|浏览23
暂无评分
摘要
PurposePresurgical fMRI is an important tool for surgery navigation in achieving maximum resection of a brain tumor. However, the functional localization accuracy may be compromised by spatial transformation from echo-planar images to high-resolution structural images. We evaluated functional localization errors associated with the spatial transformation process using three algorithms commonly applied to the presurgical fMRI in the clinic. MethodsMR images of 20 brain tumor patients for presurgical evaluation of eloquent areas near motor cortices were analyzed. All fMRI data were spatially transferred to 3D T1-weighted images using three algorithms: (a) coordinate matching (CM), (b) automated registration (AR), and (c) AR plus manual adjustment (AR(adj)). Activation clusters overlaid on original echo-planar images were manually delineated on slice-matched 2D T1- weighted images and then transferred to the 3D T1-weighted image volume, and served as the reference localization. Functional localization errors were estimated by measuring the distance between the reference localization and the activation cluster after spatial transformation and then compared for the three algorithms. ResultsThe 3D Euclidean distance for AR (10.2 4.9 mm) was found to be significantly larger (P < 0.05) than those for CM (5.6 +/- 2.6 mm) and AR(adj) (5.8 +/- 3.0 mm) algorithms. The difference between the localization errors in CM and AR(adj) was not statistically significant. ConclusionsA procedure was proposed to evaluate functional localization errors associated with spatial transformation in presurgical fMRI. Our results highlighted the necessity of routine quality control for the AR processing in the clinic.
更多
查看译文
关键词
brain tumors,functional MRI (fMRI),image registration,presurgical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要