Injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels for drug release.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION(2018)

Cited 20|Views0
No score
Abstract
A series of injectable in situ cross-linking hyaluronic acid/carboxymethyl cellulose based hydrogels (HA/CMC) was prepared via disulfide bonds by the oxidation of dissolved oxygen. The results showed that HA/CMC hydrogels exhibited tunable gelling time, appropriate rheology properties, high swelling ratio, good stability, and sustained drug release ability. The gelling time of HA/CMC hydrogels ranged from 1.4 to 7.0 min, and the values of the storage modulus, complex shear modulus, dynamic viscosity, and yield stress of HA3/CMC3 hydrogel were about 5869 Pa, 5870 Pa, 587 Pa.s, and 1969 Pa, respectively. The degradation percentage of HA1/CMC1, HA2/CMC2, and HA3/CMC3 hydrogels were about 60, 49, and 41% after incubating 42 days, and the in vitro cumulative release percentage of BSA from HA1/CMC1, HA2/CMC2, and HA3/CMC3 drug-loaded hydrogels were about 99, 91, and 82% after 30 days. The series of injectable in situ cross-linking HA/CMC hydrogels exhibited good comprehensive performance, signifying that these hydrogels could be potentially used in the fields of short-and medium-term controlled drug release, cell encapsulation, regenerative medicine, and tissue engineering. [GRAPHICS] .
More
Translated text
Key words
Hyaluronic acid,carboxymethyl cellulose,disulfide bond,hydrogel,injectable,drug release
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined