Chronic Stress Exposure Reduces Parvalbumin Expression In The Rat Hippocampus Through An Imbalance Of Redox Mechanisms: Restorative Effect Of The Antipsychotic Lurasidone

INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY(2018)

引用 35|浏览9
暂无评分
摘要
Background: Psychiatric disorders are associated with altered function of inhibitory neurotransmission within the limbic system, which may be due to the vulnerability of selective neuronal subtypes to challenging environmental conditions, such as stress. In this context, parvalbumin-positive GABAergic interneurons, which are critically involved in processing complex cognitive tasks, are particularly vulnerable to stress exposure, an effect that may be the consequence of dysregulated redox mechanisms.Methods: Adult Male Wistar rats were subjected to the chronic mild stress procedure for 7 weeks. After 2 weeks, both control and stress groups were further divided into matched subgroups to receive chronic administration of vehicle or lurasidone (3 mg/kg/d) for the subsequent 5 weeks. Using real-time RT-PCR and western blot, we investigated the expression of GABAergic interneuron markers and the levels of key mediators of the oxidative balance in the dorsal and ventral hippocampus.Results: Chronic mild stress induced a specific decrease of parvalbumin expression in the dorsal hippocampus, an effect normalized by lurasidone treatment. Interestingly, the regulation of parvalbumin levels was correlated to the modulation of the antioxidant master regulator NRF2 and its chaperon protein KEAP1, which were also modulated by pharmacological intervention.Conclusions: Our findings suggest that the susceptibility of parvalbumin neurons to stress may represent a key mechanism contributing to functional and structural impairments in specific brain regions relevant for psychiatric disorders. Moreover, we provide new insights on the mechanism of action of lurasidone, demonstrating that its chronic treatment normalizes chronic mild stress-induced parvalbumin alterations, possibly by potentiating antioxidant mechanisms, which may ameliorate specific functions that are deteriorated in psychiatric patients.
更多
查看译文
关键词
stress, hippocampus, parvalbumin, lurasidone, NRF2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要