Tracking progressive pathological and functional decline in the rTg4510 mouse model of tauopathy

Alzheimer's research & therapy(2017)

Cited 47|Views25
No score
Abstract
Background The choice and appropriate use of animal models in drug discovery for Alzheimer’s disease (AD) is pivotal to successful clinical translation of novel therapeutics, yet true alignment of research is challenging. Current models do not fully recapitulate the human disease, and even exhibit various degrees of regional pathological burden and diverse functional alterations. Given this, relevant pathological and functional endpoints must be determined on a model-by-model basis. The present work explores the rTg4510 mouse model of tauopathy as a case study to define best practices for the selection and validation of cognitive and functional endpoints for the purposes of pre-clinical AD drug discovery. Methods Male rTg4510 mice were first tested at an advanced age, 12 months, in multiple behavioural assays (step 1). Severe tau pathology and neurodegeneration was associated with profound locomotor hyperactivity and spatial memory deficits. Four of these assays were then selected for longitudinal assessment, from 4 to 12 months, to investigate whether behavioural performance changes as a function of accumulation of tau pathology (step 2). Experimental suppression of tau pathology—via doxycycline administration—was also investigated for its effect on functional performance. Results Progressive behavioural changes were detected where locomotor activity and rewarded alternation were found to most closely correlate with tau burden and neurodegeneration. Doxycycline initiated at 4 months led to a 50% suppression of transgene expression, which was sufficient to prevent subsequent increases in tau pathology and arrest related functional decline. Conclusions This two-step approach demonstrates the importance of selecting assays most sensitive to the phenotype of the model. A robust relationship was observed between pathological progression, development of phenotype, and their experimental manipulation—three crucial factors for assessing the translational relevance of future pre-clinical findings.
More
Translated text
Key words
Alzheimer’s Disease,Tau,Neurodegeneration,rTg4510,Behaviour,Cognition,Pathology
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined