Phytohormone and genome variations in Vitis amurensis resistant to downy mildew.

GENOME(2017)

引用 6|浏览9
暂无评分
摘要
Downy mildew (DM) resistance is a highly desirable agronomic trait in grape breeding. High variation in Plasmopara viticola resistance was found in Vitis cultivars. Some accessions show high P. viticola resistance even under conditions highly conducive to DM. Here, leaf disc inoculation experiments revealed that Vitis amurensis 'Zuoshaner' exhibited DM resistance with necrotic spots, whereas the V. amurensis x V. vinifera hybrid cultivar 'Zuoyouhong' was susceptible. Changes in plant hormones accumulation profiles differed between the cultivars. To investigate the genetic mechanisms related to DM resistance, we performed genome-wide sequencing of 'Zuoshaner' and 'Zuoyouhong' and identified cultivar-specific single-nucleotide polymorphisms, insertions/deletions (indels), structural variations (SVs), and copy number variations (CNVs), identifying 5399 SVs and 191 CNVs specific for 'Zuoshaner'. Genes affected by these genetic variations were enriched in biological processes, including defense response and response to stress and stimulation, and were associated with sesquiterpenoid and triterpenoid biosynthesis, ABC transporters, and phenylalanine metabolism pathways. Additionally, indels and SVs were detected in six NBS-LRR disease resistance genes, and a CNV was mapped to the Rpv8 locus responsible for downy mildew resistance. These findings further our understanding of the genetic mechanisms underlying grape mildew resistance, and will facilitate genomic markerassisted breeding for improved V. amurensis cultivars.
更多
查看译文
关键词
Plasmopara viticola,genetic variant,phytohormone,next-generation sequencing,disease resistance gene
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要