Secretion of 2,3-dihydroxyisovalerate as a limiting factor for isobutanol production in Saccharomyces cerevisiae.

FEMS YEAST RESEARCH(2017)

引用 16|浏览12
暂无评分
摘要
Isobutanol is a superior biofuel compared to ethanol, and it is naturally produced by yeasts. Previously, Saccharomyces cerevisiae has been genetically engineered to improve isobutanol production. We found that yeast cells engineered for a cytosolic isobutanol biosynthesis secrete large amounts of the intermediate 2,3-dihydroxyisovalerate (DIV). This indicates that the enzyme dihydroxyacid dehydratase (Ilv3) is limiting the isobutanol pathway and/or yeast exhibit effective transport systems for the secretion of the intermediate, competing with isobutanol synthesis. Moreover, we found that DIV cannot be taken up by the cells again. To identify the responsible transporters, microarray analysis was performed with a DIV producing strain compared to a wild type. Altogether, 19 genes encoding putative transporters were upregulated under DIV-producing conditions. Thirteen of these were deleted together with five homologous genes. A yro2 mrh1 deletion strain showed reduced DIV secretion, while a hxt5 deletion mutant showed increased isobutanol production. However, a strain deleted for all the 18 genes secreted even slightly increased amounts of the intermediates and less isobutanol. The lactate transporter Jen1 turned out to transport the intermediate 2-ketoisovalerate, but not DIV. The results suggest that the transport of DIV is a rather complex process and several unspecific transporters seem to be involved.
更多
查看译文
关键词
Ethanol Red,isobutanol,Ehrlich pathway,branched-chain amino acid pathway,xylose fermentation,metabolite secretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要