谷歌浏览器插件
订阅小程序
在清言上使用

Aging of monolithic zirconia dental prostheses: Protocol for a 5-year prospective clinical study using ex vivo analyses

Contemporary Clinical Trials Communications(2016)

引用 21|浏览13
暂无评分
摘要
Background Recent introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) monolithic zirconia dental prostheses raises the issue of material low thermal degradation (LTD), a well-known problem with zirconia hip prostheses. This phenomenon could be accentuated by masticatory mechanical stress. Until now zirconia LTD process has only been studied in vitro. This work introduces an original protocol to evaluate LTD process of monolithic zirconia prostheses in the oral environment and to study their general clinical behavior, notably in terms of wear. Methods/design 101 posterior monolithic zirconia tooth elements (molars and premolars) are included in a 5-year prospective clinical trial. On each element, several areas between 1 and 2 mm2 (6 on molars, 4 on premolars) are determined on restoration surface: areas submitted or non-submitted to mastication mechanical stress, glazed or non-glazed. Before prosthesis placement, ex vivo analyses regarding LTD and wear are performed using Raman spectroscopy, SEM imagery and 3D laser profilometry. After placement, restorations are clinically evaluated following criteria of the World Dental Federation (FDI), complemented by the analysis of fracture clinical risk factors. Two independent examiners perform the evaluations. Clinical evaluation and ex vivo analyses are carried out after 6 months and then each year for up to 5 years. Discussion For clinicians and patients, the results of this trial will justify the use of monolithic zirconia restorations in dental practice. For researchers, the originality of a clinical study including ex vivo analyses of material aging will provide important data regarding zirconia properties.Trial registration: ClinicalTrials.gov Identifier: NCT02150226.
更多
查看译文
关键词
Dental prosthesis,Zirconia,Low thermal degradation,Computer-aided design/computer-aided manufacturing,Wear,Raman spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要