Bi-allelic alterations in DNA repair genes underpin homologous recombination DNA repair defects in breast cancer.

JOURNAL OF PATHOLOGY(2017)

引用 44|浏览49
暂无评分
摘要
Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers. An integrated approach examining methylation, gene expression, and whole-exome sequencing was employed to ascertain the aetiology of HRD. Functional HRD breast cancers displayed genomic features of lack of competent HR, including large-scale state transitions and specific mutational signatures. Somatic and/or germline genetic alterations resulting in bi-allelic loss-of-function of HR genes underpinned functional HRD in 89% of cases, and were observed in only one of the 15 HR-proficient samples tested. These findings indicate the importance of a comprehensive genetic assessment of bi-allelic alterations in the HR pathway to deliver a precision medicine-based approach to select patients for therapies targeting tumour-specific DNA repair defects. Copyright (C) 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
更多
查看译文
关键词
BRCAness,homologous recombination-deficient,RAD51,DNA repair,mutation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要