Disruption of IFN-I signaling promotes HER2/neu tumor progression and breast cancer stem cells.

CANCER IMMUNOLOGY RESEARCH(2018)

引用 33|浏览89
暂无评分
摘要
Type I interferon (IFN-I) is a class of antiviral immunomodulatory cytokines involved in many stages of tumor initiation and progression. IFN-I acts directly on tumor cells to inhibit cell growth and indirectly by activating immune cells to mount antitumor responses. To understand the role of endogenous IFN-I in spontaneous, oncogene-driven carcinogenesis, we characterized tumors arising in HER2/neu transgenic (neuT) mice carrying a nonfunctional mutation in the IFNI receptor (IFNAR1). Such mice are unresponsive to this family of cytokines. Compared with parental neu(+/-) mice (neuT mice), IFNAR1(-/-) neu(+/-) mice (IFNAR-neuT mice) showed earlier onset and increased tumor multiplicity with marked vascularization. IFNAR-neuT tumors exhibited deregulation of genes having adverse prognostic value in breast cancer patients, including the breast cancer stem cell (BCSC) marker aldehyde dehydrogenase-1A1 (ALDH1A1). An increased number of BCSCs were observed in IFNAR-neuT tumors, as assessed by ALDH1A1 enzymatic activity, clonogenic assay, and tumorigenic capacity. In vitro exposure of neuT(+) mammospheres and cell lines to antibodies to IFN-I resulted in increased frequency of ALDH(+) cells, suggesting that IFN-I controls stemness in tumor cells. Altogether, these results reveal a role of IFN-I in neuT-driven spontaneous carcinogenesis through intrinsic control of BCSCs. (C) 2018 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要