A Novel Interpretation for Arterial Pulse Pressure Amplification in Health and Disease.

JOURNAL OF HEALTHCARE ENGINEERING(2018)

引用 5|浏览12
暂无评分
摘要
Arterial pressure waves have been described in one dimension using several approaches, such as lumped (Windkessel) or distributed (using Navier-Stokes equations) models. An alternative approach consists of modeling blood pressure waves using a Korteweg-de Vries (KdV) equation and representing pressure waves as combinations of solitons. This model captures many key features of wave propagation in the systemic network and, in particular, pulse pressure amplification (PPA), which is a mechanical biomarker of cardiovascular risk. The main objective of this work is to compare the propagation dynamics described by a KdV equation in a human-like arterial tree using acquired pressure waves. Furthermore, we analyzed the ability of our model to reproduce induced elastic changes in PPA due to different pathological conditions. To this end, numerical simulations were performed using acquired central pressure signals from different subject groups (young, adults, and hypertensive) as input and then comparing the output of the model with measured radial artery pressure waveforms. Pathological conditions were modeled as changes in arterial elasticity (E). Numerical results showed that the model was able to propagate acquired pressure waveforms and to reproduce PPA variations as a consequence of elastic changes. Calculated elasticity for each group was in accordance with the existing literature.
更多
查看译文
关键词
arterial pulse pressure amplification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要