Git1 Regulates Synaptic Structural Plasticity Underlying Learning

PLOS ONE(2018)

引用 10|浏览20
暂无评分
摘要
The signaling scaffold protein GIT1 is expressed widely throughout the brain, but its function in vivo remains elusive. Mice lacking GIT1 have been proposed as a model for attention deficit -hyperactivity disorder, due to alterations in basal locomotor activity as well as paradoxical locomotor suppression by the psychostimulant amphetamine. Since we had previously shown that GIT1-knockout mice have normal locomotor activity, here we examined GIT1-deficient mice for ADHD-like behavior in more detail, and find neither hyperactivity nor amphetamine-induced locomotor suppression. Instead, GIT1-deficient mice exhibit profound learning and memory defects and reduced synaptic structural plasticity, consistent with an intellectual disability phenotype. We conclude that loss of GIT1 alone is insufficient to drive a robust ADHD phenotype in distinct strains of mice. In contrast, multiple learning and memory defects have been observed here and in other studies using distinct GIT1-knockout lines, consistent with a predominant intellectual disability phenotype related to altered synaptic structural plasticity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要