Disrupting The Three-Dimensional Regulatory Topology Of The Pitx1 Locus Results In Overtly Normal Development

DEVELOPMENT(2018)

Cited 12|Views18
No score
Abstract
Developmental gene expression patterns are orchestrated by thousands of distant-acting transcriptional enhancers. However, identifying enhancers essential for the expression of their target genes has proven challenging. Maps of long-range regulatory interactions may provide the means to identify enhancers crucial for developmental gene expression. To investigate this hypothesis, we used circular chromosome conformation capture coupled with interaction maps in the mouse limb to characterize the regulatory topology of Pitx1, which is essential for hindlimb development. We identified a robust hindlimb-specific interaction between Pitx1 and a putative hindlimb-specific enhancer. To interrogate the role of this interaction in Pitx1 regulation, we used genome editing to delete this enhancer in mouse. Although deletion of the enhancer completely disrupts the interaction, Pitx1 expression in the hindlimb is only mildly affected, without any detectable compensatory interactions between the Pitx1 promoter and potentially redundant enhancers. Pitx1 enhancer null mice did not exhibit any of the characteristic morphological defects of the Pitx1(-/) (-)mutant. Our results suggest that robust, tissue-specific physical interactions at essential developmental genes have limited predictive value for identifying enhancer mutations with strong loss-of-function phenotypes.
More
Translated text
Key words
Enhancer-promoter interactions, Genomics, Limb development, Enhancer loss-of-function mutations
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined