谷歌Chrome浏览器插件
订阅小程序
在清言上使用

CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-κB pathway.

Biochemical and Biophysical Research Communications(2018)

引用 34|浏览5
暂无评分
摘要
The emergence of chemoresistance greatly increases the recurrence risk for non-muscle invasive bladder cancer (NMIBC) patients, which is still a big concern of clinicians. Understanding the mechanisms of drug resistance is of great significance for preventing and reversing it. We showed here that CXC motif chemokine ligand 5 (CXCL5) was overexpressed in mitomycin C-resistant bladder cancer cell line M-RT4. Meanwhile, parental RT4 cell treated with recombinant human CXCL5 (rhCXCL5) reduced its sensitivity to mitomycin C. Conversely, knockdown CXCL5 sensitized M-RT4 cell. We further investigated the molecular mechanisms finding that epithelial mesenchymal transition (EMT) and NF-κB pathway were activated in M-RT4 cell, which could be attenuated by knockdown CXCL5. All these data indicated that CXCL5 may promote mitomycin resistance by activating EMT and NF-κB pathway. Thus, our study identifies CXCL5 as a novel chemoresistance-related marker in NMIBC, thereby providing new strategies to overcome chemoresistance for NMIBC patients.
更多
查看译文
关键词
Non-muscle invasive bladder cancer,CXCL5,Chemoresistance,EMT,NF-κB
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要