Characterisation of the fumarate hydratase repertoire in Trypanosoma cruzi.

International journal of biological macromolecules(2017)

Cited 11|Views13
No score
Abstract
Nifurtimox and benznidazole represent the only treatments options available targeting Chagas disease, the most important parasitic infection in the Americas. However, use of these is problematic as they are toxic and ineffective against the more severe stages of the disease. In this work, we used a multidisciplinary approach to characterise the fumarases from Trypanosoma cruzi, the causative agent of Chagas Disease. We showed this trypanosome expresses cytosolic and mitochondrial fumarases that via an iron-sulfur cluster mediate the reversible conversion of fumarate to S-malate. Based on sequence, biochemical properties and co-factor binding, both T. cruzi proteins share characteristics with class I fumarases, enzymes found in bacteria and some other protozoa but absent from humans, that possess class II isoforms instead. Gene disruption suggested that although the cytosolic or mitochondrial fumarase activities are individually dispensable their combined activity is essential for parasite viability. Finally, based on the mechanistic differences with the human (host) fumarase, we designed and validated a selective inhibitor targeting the parasite enzyme. This study showed that T. cruzi fumarases should be exploited as targets for the development of new chemotherapeutic interventions against Chagas disease.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined