谷歌浏览器插件
订阅小程序
在清言上使用

Biomechanical influences of transcorporeal tunnels on C4 vertebra under physical compressive load under flexion movement: a finite element analysis.

WORLD NEUROSURGERY(2018)

引用 12|浏览7
暂无评分
摘要
BACKGROUND: Anterior percutaneous endoscopic transcorporeal cervical discectomy is an alternative operation for cervical disc herniation. However, few reports have evaluated the biomechanical influence of tunnels on vertebrae. We compared biomechanical distinctions between intact and tunneled models of vertebrae to analyze the safety of anterior percutaneous endoscopic transcorporeal cervical discectomy based on a C2-T1 finite element (FE) model. METHODS: Groups of C2-T1 FE models were simulated with C4 tunneled by 2 methods (group A: with partial superior endplate excision; group B: without partial superior endplate excision) and various tunnel diameters (6, 8, and 10 mm). All FE models were loaded under a 1-Nm flexion moment. RESULTS: The area and maximum of stress concentrations were correlated with tunnel diameter, The distribution of stress on C4 superior endplates showed no significant difference between B6 and the intact model (P > 0.05), but significant differences with other tunneled models (P < 0.001). Maximum stress on the lateral wall of tunnels was positively correlated with tunnel diameter and induced high risks of cancellous bone fracture for diameters reaching 10 mm in group B and 8 mm in group A. CONCLUSIONS: Transcorporeal tunnel in C4 vertebrae without endplate excision should be limited with diameter of 6 mm, and a tunnel diameter >10 mm, excision of the endplate >8 mm, and excision of the center side of the endplate should also be avoided.
更多
查看译文
关键词
Biomechanics,Cervical discectomy,Endoscopy,Finite element
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要