Identification of potential gene targets in systemic vasculitis using DNA microarray analysis.

MOLECULAR MEDICINE REPORTS(2017)

Cited 2|Views8
No score
Abstract
The present study aimed to identify the involvement of critical genes in systemic vasculitis, to gain an improved understanding of the molecular circuity and to investigate novel potential gene targets for systemic vasculitis treatment. The dual-color cDNA microarray data of GSE16945, consisting of peripheral mononuclear blood cell specimens from 13 patients with systemic vasculitis and 16 healthy controls, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened in systemic vasculitis compared with controls using BRB ArrayTools, followed by the construction of a protein-protein interaction (PPI) network using the clusterProfiler package, and significant functional interaction (FI) module selection. Furthermore, transcriptional factors (TFs) among the identified DEGs were predicted and a transcriptional regulation network was constructed. A total of 173 up-and 93 downregulated genes were identified, which were mainly associated with immune response pathways. FBJ murine osteosarcoma viral oncogene homolog (FOS), ubiquitin B (UBB), signal transducer and activator of transcription 1 (STAT1) and MX dynamin-like GTPase 1 (MX1) were identified as hub proteins in the PPI network. Furthermore, UBB, FOS, and STAT1 were hub proteins in the three identified FI modules, respectively. In total, nine TFs were predicted among the DEGs. Of the DEGs that were predicted to be TFs, STAT1, v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein Z (YWHAZ), which interacted with each other, were identified to regulate further DEGs as target genes. Various genes, including FOS, UBB, MX1, STAT1, MAFB, and YWHAZ may be potential targets useful for the treatment of systemic vasculitis.
More
Translated text
Key words
systemic vasculitis,differentially expressed genes,protein-protein interaction network,transcriptional factors
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined