Cytochrome P4501-inhibiting chemicals amplify aryl hydrocarbon receptor activation and IL-22 production in T helper 17 cells.

Biochemical Pharmacology(2018)

引用 37|浏览21
暂无评分
摘要
The aryl hydrocarbon receptor (AHR) controls interleukin 22 production by T helper 17 cells (Th17). IL-22 contributes to intestinal homeostasis but has also been implicated in chronic inflammatory disorders and colorectal cancer, highlighting the need for appropriate regulation of IL-22 production. Upon activation, the AHR induces expression of cytochrome P4501 (CYP1) enzymes which in turn play an important feedback role that curtails the duration of AHR signaling by metabolizing AHR ligands. Recently we described how agents that inhibit CYP1 function potentiate AHR signaling by disrupting metabolic clearance of the endogenous ligand 6-formylindolo[3,2-b]carbazole (FICZ). In the present study, we investigated the immune-modulating effects of environmental pollutants such as polycyclic aromatic hydrocarbons on Th17 differentiation and IL-22 production. Using Th17 cells deficient in CYP1 enzymes (Cyp1a1/1a2/1b1−/−) we show that these chemicals potentiate AHR activation through inhibition of CYP1 enzymes which leads to increases in intracellular AHR agonists. Our findings demonstrate that IL-22 production by Th17 cells is profoundly enhanced by impaired CYP1-function and strongly suggest that chemicals able to modify CYP1 function or expression may disrupt AHR-mediated immune regulation by altering the levels of endogenous AHR agonist(s).
更多
查看译文
关键词
Aryl hydrocarbon receptor,Cytochrome P4501,T helper 17 cells,Interleukin 22,Enzyme inhibition,Synergistic receptor activation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要